Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
1.
Cancer Rep (Hoboken) ; 7(3): e2050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517478

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is widely recognized as a globally prevalent malignancy. Immunotherapy is a promising therapy for HCC patients. Increasing evidence suggests that lncRNAs are involved in HCC progression and immunotherapy. AIM: The study reveals the mechanistic role of long non-coding RNA (lncRNA) FOXD1-AS1 in regulating migration, invasion, circulating tumor cells (CTCs), epithelial-mesenchymal transition (EMT), and immune escape in HCC in vitro. METHODS: This study employed real-time PCR (RT-qPCR) to measure FOXD1-AS1, miR-615-3p, and programmed death-ligand 1 (PD-L1). The interactions of FOXD1-AS1, miR-615-3p, and PD-L1 were validated via dual-luciferase reporter gene and ribonucleoprotein immunoprecipitation (RIP) assay. In vivo experimentation involves BALB/c mice and BALB/c nude mice to investigate the impact of HCC metastasis. RESULTS: The upregulation of lncRNA FOXD1-AS1 in malignant tissues significantly correlates with poor prognosis. The investigation was implemented on the impact of lncRNA FOXD1-AS1 on the migratory, invasive, and EMT of HCC cells. It has been observed that the lncRNA FOXD1-AS1 significantly influences the generation and metastasis of MCTC in vivo analysis. In mechanistic analysis, lncRNA FOXD1-AS1 enhanced immune escape in HCC via upregulation of PD-L1, which acted as a ceRNA by sequestering miR-615-3p. Additionally, lncRNA FOXD1-AS1 was found to modulate the EMT of CTCs through the activation of the PI3K/AKT pathway. CONCLUSION: This study presents compelling evidence supporting the role of lncRNA FOXD1-AS1 as a miRNA sponge that sequesters miR-655-3p and protects PD-L1 from suppression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Antígeno B7-H1/genética , Fosfatidilinositol 3-Quinases/genética , RNA Longo não Codificante/genética , Camundongos Nus , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/genética
2.
Int J Antimicrob Agents ; 63(6): 107158, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537722

RESUMO

Rifampicin is the most powerful first-line antibiotic for tuberculosis, which is caused by Mycobacterium tuberculosis. Although accumulating evidence from sequencing data of clinical M. tuberculosis isolates suggested that mutations in the rifampicin-resistance-determining region (RRDR) are strongly associated with rifampicin resistance, the comprehensive characterisation of RRDR polymorphisms that confer this resistance remains challenging. By incorporating I-SceI sites for I-SceI-based integrant removal and utilizing an L5 swap strategy, we efficiently replaced the integrated plasmid with alternative alleles, making mass allelic exchange feasible in mycobacteria. Using this method to establish a fitness-related gain-of function screen, we generated a mutant library that included all single-amino-acid mutations in the RRDR, and identified the important positions corresponding to some well-known rifampicin-resistance mutations (Q513, D516, S522, H525, R529, S531). We also detected a novel two-point mutation located in the RRDR confers a fitness advantage to M. smegmatis in the presence or absence of rifampicin. Our method provides a comprehensive insight into the growth phenotypes of RRDR mutants and should facilitate the development of anti-tuberculosis drugs.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124008, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38364449

RESUMO

In the minerals processing industry, the surface chemistry of mineral particles and its real-time detection can significantly enhance process performance, and ultimately leading to automotive and intelligent control. The adsorption of collector molecule onto bulk mineral specimens could be investigated with the help of shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). However, this method is unsuitable for the online detection of particles fluid consisted of micro-sized chalcocite that encountered in industrial production processes. In this work, a novel strategy of shell-isolated nanoparticles synthesis by electrodeposition of gold nanoparticles film and isolation of this film with crosslinked silica monolayer was proposed. The adsorption of 2-mercaptobenzothiazole (MBT), a typical flotation collector, onto a copper sulfide mineral, chalcocite was measured in-situ with the help of such a SERS substrate. Enhancement factors of 106-107 was calculated based on an idealized model. Furthermore, we discussed the stability of the silica isolation monolayer under high-power laser irradiation.

5.
Adv Healthc Mater ; 13(4): e2301332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924312

RESUMO

The continuous reduction of clinically available antibiotics has made it imperative to exploit more effective antimicrobial therapies, especially for difficult-to-treat Gram-negative pathogens. Herein, it is shown that the combination of an antimicrobial nanozyme with the clinically compatible basic amino acid L-arginine affords a potent treatment for infections with Gram-negative pathogens. In particular, the antimicrobial activity of the antimicrobial nanozyme is dramatically increased by ≈1000-fold after L-arginine stimulation. Specifically, the combination therapy enhances bacterial outer and inner membrane permeability and promotes intracellular reactive oxygen species (ROS) generation. Moreover, the metabolomic and transcriptomic results reveal that combination treatment leads to the increased ROS-mediated damage by inhibiting the tricarboxylic acid cycle and oxidative phosphorylation, thereby inducing an imbalance of the antioxidant and oxidant systems. Importantly, L-arginine dramatically significantly accelerates the healing of infected wounds in mouse models of multidrug-resistant peritonitis-sepsis and skin wound infection. Overall, this work demonstrates a novel synergistic antibacterial strategy by combining the antimicrobial nanozymes with L-arginine, which substantively facilitates the nanozyme-mediated killing of pathogens by promoting ROS production.


Assuntos
Anti-Infecciosos , Arginina , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Arginina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia
6.
Org Lett ; 26(1): 193-197, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38147844

RESUMO

In this study, a multicomponent reaction via the Mannich intermediate was developed using methanol, secondary amine, and sulfonamide as starting materials. This method uses methanol as a green C1 source. The substrate scope is wide, and the yield is good. The mechanistic study shows that methanol generates formaldehyde under electrochemical conditions, and sulfonyl amidine as a nucleophile reacts with Schiff base intermediates to form N-sulfonyl amidine in a single step.

7.
PLoS Biol ; 21(12): e3002433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091366

RESUMO

The emerging and global spread of a novel plasmid-mediated colistin resistance gene, mcr-1, threatens human health. Expression of the MCR-1 protein affects bacterial fitness and this cost correlates with lipid A perturbation. However, the exact molecular mechanism remains unclear. Here, we identified the MCR-1 M6 variant carrying two-point mutations that conferred co-resistance to ß-lactam antibiotics. Compared to wild-type (WT) MCR-1, this variant caused severe disturbance in lipid A, resulting in up-regulation of L, D-transpeptidases (LDTs) pathway, which explains co-resistance to ß-lactams. Moreover, we show that a lipid A loading pocket is localized at the linker domain of MCR-1 where these 2 mutations are located. This pocket governs colistin resistance and bacterial membrane permeability, and the mutated pocket in M6 enhances the binding affinity towards lipid A. Based on this new information, we also designed synthetic peptides derived from M6 that exhibit broad-spectrum antimicrobial activity, exposing a potential vulnerability that could be exploited for future antimicrobial drug design.


Assuntos
Colistina , Proteínas de Escherichia coli , Humanos , Colistina/farmacologia , Antibacterianos/farmacologia , Antibióticos beta Lactam , Lipídeo A , Peptídeos Antimicrobianos , Monobactamas , Plasmídeos , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana
8.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056894

RESUMO

BACKGROUND: Antineoplastic chemotherapies are dramatically efficient when they provoke immunogenic cell death (ICD), thus inducing an antitumor immune response and even tumor elimination. However, activated caspases, the hallmark of most cancer chemotherapeutic agents, render apoptosis immunologically silent. Whether they are dispensable for chemotherapy-induced cell death and the apoptotic clearance of cells in vivo is still elusive. METHODS: A rational cell-based anticancer drug library screening was performed to explore the immunogenic apoptosis pathway and therapeutic targets under apoptotic caspase inhibition. Based on this screening, the potential of caspase inhibition in enhancing chemotherapy-induced antitumor immunity and the mechanism of actions was investigated by various cells and mouse models. RESULTS: Heat shock protein 90 (Hsp90) inhibition activates caspases in tumor cells to produce abundant genomic and mitochondrial DNA fragments and results in cell apoptosis. Meanwhile, it hijacks Caspase-9 signaling to suppress intrinsic DNA sensing. Pharmacological blockade or genetic deletion of Caspase-9 causes tumor cells to secrete interferon (IFN)-ß via tumor intrinsic mitochondrial DNA/the second messenger cyclic GMP-AMP (cGAS) /stimulator of interferon genes (STING) pathway without impairing Hsp90 inhibition-induced cell death. Importantly, both Caspase-9 and Hsp90 inhibition triggers an ICD, leading to the release of numerous damage-associated molecular patterns such as high-mobility group box protein 1, ATP and type I IFNs in vitro and remarkable antitumor effects in vivo. Moreover, the combination treatment also induces adaptive resistance by upregulating programmed death-ligand 1 (PD-L1). Additional PD-L1 blockade can further overcome this acquired immune resistance and achieve complete tumor regression. CONCLUSIONS: Blockade of Caspase-9 signaling selectively provokes Hsp90-based chemotherapy-mediated tumor innate sensing, leading to CD8+ T cell-dependent tumor control. Our findings implicate that pharmacological modulation of caspase pathway increases the tumor-intrinsic innate sensing and immunogenicity of chemotherapy-induced apoptosis, and synergizes with immunotherapy to overcome adaptive resistance.


Assuntos
Antineoplásicos , Interferon Tipo I , Neoplasias , Animais , Camundongos , Antineoplásicos/farmacologia , Antígeno B7-H1/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Caspases/metabolismo , DNA Mitocondrial , Proteínas de Choque Térmico HSP90/metabolismo , Interferon Tipo I/metabolismo , Neoplasias/tratamento farmacológico
9.
Sheng Li Xue Bao ; 75(6): 740-766, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151341

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive impairment. The main hypotheses about the pathogenesis of AD include the hypothesis of ß-amyloid protein, the hypothesis of abnormal phosphorylation of Tau protein, and the hypothesis of neuroinflammation. In recent years, environmental pollutants have been considered as an important factor in causing neurological dysfunction. Common environmental pollutants include heavy metals, pesticides, polychlorinated biphenyls, microplastics, and air pollutants, all of which have been proven to have neurotoxicity. In this review, we not only discussed epidemiological and animal experimental studies that link environmental pollution with AD, but also summarized the mechanisms of action of relevant toxins, providing insights for studying the interrelationships between environmental pollutants and AD.


Assuntos
Doença de Alzheimer , Poluentes Ambientais , Doenças Neurodegenerativas , Animais , Doença de Alzheimer/induzido quimicamente , Poluentes Ambientais/toxicidade , Plásticos , Peptídeos beta-Amiloides/metabolismo
10.
Front Plant Sci ; 14: 1234148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915504

RESUMO

East Asia is the richest region of plant biodiversity in the northern temperate zone, and its radiation provides key insights for understanding rapid speciation, including evolutionary patterns and processes. However, it is challenging to investigate the recent evolutionary radiation among plants because of the lack of genetic divergence, phenotypic convergence, and interspecific gene flow. Epimedium sect. Diphyllon is a rarely studied plant lineage endemic to East Asia, especially highly diversified in its southern part. In this study, we report a robust phylogenomic analysis based on genotyping-by-sequencing data of this lineage. The results revealed a clear biogeographic pattern for Epimedium sect. Diphyllon with recognition into two major clades corresponding to the Sino-Himalayan and Sino-Japanese subkingdoms of East Asian Flora and rapid diversification of the extant species dated to the Pleistocene. Evolutionary radiation of Epimedium sect. Diphyllon is characterized by recent and predominant parallel evolution and atavism between the two subkingdom regions, with extensive reticulating hybridization within each region during the course of diversification in southern East Asia. A parallel-atavism-introgression hypothesis is referred to in explaining the radiation of plant diversity in southern East Asia, which represents a potential model for the rapid diversification of plants under global climate cooling in the late Tertiary. Our study advances our understanding of the evolutionary processes of plant radiation in East Asia as well as in other biodiversity hotspot regions.

11.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2413-2420, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899107

RESUMO

Dissolved organic carbon (DOC) plays a crucial role in the assessment of greenhouse gas emission and carbon balance in peatlands. However, limited research has been conducted on the seasonal variations and properties of soil water DOC content at different depths in the permafrost peatlands of the Great Hing'an Mountains. In this study, we analyzed the seasonal patterns of soil water DOC contents (surface, 10 cm, 20 cm, 30 cm, 40 cm, and permafrost layer) the permafrost peatlands of the Great Hing'an Mountains (Tuqiang Forestry Bureau), and investigated the influencing factors, such as electrical conductivity, dissolved oxygen, HCO3- concentration, pH value, oxidation-reduction potential, and CO2 content. The stability of DOC was assessed by using UV-Vis spectrum. There were significant seasonal dynamics of DOC content in soil water, with higher contents in autumn and lower content in summer, ranging from 55.7 to 188.1 mg·L-1. There were significant differences in DOC content among different soil depths, with the highest levels detected in the permafrost layer. The DOC content showed a significantly positive correlation with pH value and electrical conductivity, while showed a significantly negative correlation with redox potential, HCO3- concentration, and dissolved oxygen content. Additionally, there was a significantly positive correlation between DOC and CO2 contents. The dissolved CO2 content in soil water increased with soil depth, with the highest content observed in the permafrost layer. Results of spectral analysis showed higher aromaticity in autumn compared to summer, indicating greater stability of DOC during the autumn season. Our results clarified the seasonal variations of soil water DOC in permafrost peatlands of the Great Hing'an Mountains and could provide important data to understand the carbon cycling in the region.


Assuntos
Pergelissolo , Solo , Solo/química , Estações do Ano , Pergelissolo/química , Matéria Orgânica Dissolvida , Água/análise , Dióxido de Carbono/análise , Carbono/análise , Oxigênio
12.
Zhongguo Gu Shang ; 36(9): 839-45, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37735075

RESUMO

OBJECTIVE: To investigate the causes of soft tissue complications in patients with dorsal displacement distal radius fractures (DRF) after volar locking plate surgery. METHODS: From July 2016 to May 2021, 112 patients with dorsal displacement DRF were treated with volar locking plate surgery, including 45 males and 67 females. The average age was (46.24±10.08) years old, ranging from 18 to 85 years old. According to whether there were soft tissue complications after operation, they were divided into complication group (40 cases) and non complication group (72 cases). Compared with preoperation, the radial metacarpal inclination and ulnar deflection angle, wrist flexion activity and dorsal extension activity, and grip strength of patients after operation were significantly improved (P<0.05). Compared with the non complication group, the proportion of patients in the complication group whose age was>60 years, body mass index (BMI) more than 30 kg·m-2, smoking, diabetes, fracture type C, open fracture and operation time more than 90 min was higher (P<0.05). The age, BMI, smoking, diabetes, fracture AO classification, fracture type and operation time were analyzed by multifactor Logistic regression to determine the independent risk factors affecting the occurrence of postoperative soft tissue complications of patients, establish a nomogram prediction model, and evaluate the model. RESULTS: At the latest follow-up, the excellent and good rate of wrist joint function recovery was 83.93% (94/112), and the excellent and good rate of fracture reduction was 84.82% (95/112). Multivariate Logistic regression analysis showed that age more than 60 years old, diabetes, fracture type C, open fracture and operation time more than 90 min were independent risk factors for postoperative soft tissue complications (P<0.05). The receiver operating characteristic (ROC), calibration curve and clinical decision curve of the nomogram prediction model showed discrimination, accuracy and validity were good. CONCLUSION: Age more than 60 years, diabetes mellitus, fracture type C, open fracture, and operation time more than 90 min are all independent risk factors for soft tissue complications after DRF volar plate fixation. In clinical treatment, perioperative soft tissue management should be done in such patients to prevent complications.


Assuntos
Fraturas Expostas , Ossos Metacarpais , Fraturas do Punho , Feminino , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Idoso , Idoso de 80 Anos ou mais , Fatores de Risco , Articulação do Punho/cirurgia
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(9): 982-988, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37718407

RESUMO

Nitric oxide is a messenger molecule for vasodilation of vascular smooth muscle cells, and inhaled nitric oxide (iNO) can dilate pulmonary blood vessels and reduce pulmonary vascular resistance, thereby reducing pulmonary artery pressure, but with no influence on systemic circulation pressure. Guidelines in China and overseas recommend the use of iNO in full-term infants and late preterm infants, and it has been proved that it has a marked effect on persistent pulmonary hypertension and hypoxic respiratory failure in such infants. However, recent studies have shown that there is an increase in the off-label use of iNO in preterm infants with a gestational age of <34 weeks. This article reviews the research progress on the efficacy, safety, timing, dose, and withdrawal mode of iNO and its combination with vasoactive drugs in the treatment of preterm infants with a gestational age of <34 weeks in China and overseas, so as to provide a reference for clinical application.

14.
J Asian Nat Prod Res ; : 1-7, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712720

RESUMO

Two oxygenated ergostane-type steroids including one new compound, 3ß-hydroxy-5α,6ß-methoxyergosta-7,22-dien-15-one (1) along with a known analogue ergosta-6,22-dien-3ß,5α,8α-triol (2) were isolated from the crude extracts of the marine sponge-derived fungus Aspergillus sp. Their structures were elucidated on the basis of combined NMR and MS spectroscopic methods. Compound 1 was a marine ergostane-type steroid with two methoxy groups at C-5 and C-6, respectively. These oxygenated ergostane-type steroids were evaluated for their antibacterial activities against human or aquatic pathogens. Among them, compound 1 exhibited antibacterial activity against Staphylococcus aureus.

15.
Infect Drug Resist ; 16: 5251-5261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601558

RESUMO

Background: The emergence and spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is a potential epidemiological threat that needs to be monitored. However, the transmission and pathogenic characteristics of hv-CRKP in China remain unclear. We investigated the epidemiological characteristics of gut colonized hv-CRKP in a hospital in Guangdong Province, China. Methods: A total of 46 gut colonized hv-CRKP isolates were collected from Sun Yat-Sen Memorial Hospital (Guangzhou, China) from August 31st to December 31st, 2021. Minimum inhibitory concentrations (MICs) were obtained for 15 antibiotics for 46 hv-CRKP isolates. BALB/C mice infection model and mucoviscosity assay was used to evaluate the virulence of the isolates. The characteristics of genome, phylogenetic relationship and the structure of the plasmid of 46 gut colonized hv-CRKP isolates were compared with pathogenic isolates from GeneBank based on whole-genome data. Results: The hv-CRKP isolation rate of all gut colonized carbapenem-resistant Klebsiella pneumoniae was 17% (46/270), and the intestinal colonization rate of hv-CRKP was irrelevant to the sex, age, department of hospitalization, and history of antibiotic use of the host. The gut colonized hv-CRKP showed pandrug resistance and hypervirulence. The gut colonized hv-CRKP and pathogenic hv-CRKP prevalent in China were mainly ST11 hv-CRKP and had two major epidemic clades. The similarities in genomic characteristics between gut colonized hv-CRKP and pathogenic hv-CRKP were consistent. The gut colonized hv-CRKP carried an incomplete structure pK2044 virulence plasmid from hypervirulent K. pneumoniae NTUH-K2044 by analyzing the virulence plasmid structure. Conclusion: Our results suggest that the gut colonized ST11 hv-CRKP may serve as a reservoir for the clinical pathogenic ST11 HV-CRKP. It is necessary to further strengthen the monitoring of gut colonized hv-CRKP and research the potential mechanism of infection caused by gut colonized hv-CRKP.

16.
ACS Nano ; 17(16): 15411-15423, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37534992

RESUMO

Colistin is the last-resort antibiotic to treat multidrug-resistant (MDR) Gram-negative bacterial infections that are untreatable by other clinically available antibiotics. However, the recently merged plasmid-borne gene mobilized colistin resistance (mcr) leads to modification of the colistin target (i.e., bacterial membrane), greatly compromising the therapy outcome of colistin. To address this unmet clinical need, a nanocomplex (CMS-pEt_20 NP) of anionic prodrug colistin methanesulfonate (CMS) and guanidinium-functionalized cationic polymer pEt_20 is developed through facile self-assembly for co-delivering an antibiotic and antimicrobial polymer with membrane affinity to reverse colistin resistance. The CMS-pEt_20 NP formation enables reversal of colistin resistance and complete killing of clinically isolated mcr-positive colistin-resistant bacteria including MDR E. coli and K. pneumoniae, while monotreatment of polymer or antibiotic at equivalent doses exhibits no antibacterial activity. Mechanistic studies reveal that the CMS-pEt_20 NP enhanced the affinity of delivered CMS to the modified membrane of colistin-resistant bacteria, reviving the membrane lytic property of colistin. The increased membrane permeability caused by colistin in turn promotes an influx of pEt_20 to generate intracellular ROS stress, resulting in elimination of colistin-resistant bacteria. More importantly, a colistin-resistant mouse peritonitis-sepsis infection model demonstrates the excellent therapeutic efficacy of CMS-pEt_20 NP with 100% survival of the infected mouse. In addition, the nanocomplex is proven not toxic both in vitro and in vivo. Taken together, the self-assembled antibiotic-polymer nanocomplex with two complementary antibacterial mechanisms successfully reverses the colistin resistance phenotype in bacteria, and it can be a potential strategy to treat untreatable colistin-resistant MDR bacterial infections.


Assuntos
Antibacterianos , Colistina , Animais , Camundongos , Antibacterianos/farmacologia , Colistina/farmacologia , Escherichia coli , Polímeros , Farmacorresistência Bacteriana , Klebsiella pneumoniae , Fenótipo , Testes de Sensibilidade Microbiana
17.
Transl Oncol ; 36: 101742, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531863

RESUMO

OBJECTIVES: NLR family CARD domain containing 5 (NLRC5) could promote major histocompatibility complex class I (MHC-I)-dependent CD8+ T cell-mediated anticancer immunity. In this study, the immunosurveillance role and underlying mechanisms of NLRC5 in endometrial cancer (EC) were characterized. METHODS: CD8+ T cells were separated from healthy women's peripheral blood by using magnetic beads. The effect of NLRC5 and interferon-ß (IFN-ß) on immunosurveillance of EC were examined through a mouse tumor model and a CD8+ T cell-EC cell coculture system after NLRC5 overexpression and IFN-ß overexpression or depletion. The effect of NLRC5 on IFN-ß expression was examined with gain- and loss-of-function experiments. RESULTS: NLRC5 overexpression in the EC cell and CD8+ T cell coculture system inhibited EC cell proliferation and migration and promoted EC cell apoptosis and CD8+ T cell proliferation. In vivo, NLRC5 overexpression increased the proportion of CD8+ T cells and inhibited EC progression. Furthermore, IFN-ß overexpression in the EC cell and CD8+ T cell coculture system activated CD8+ T cell proliferation; however, genetic depletion of IFN-ß exerted the opposite effects. In addition, NLRC5 could negatively regulate IFN-ß expression in EC cells. Mechanistically, NLRC5 potentiated the antitumor responses of CD8+ T cells to EC by activating IFN-ß. CONCLUSIONS: Taken together, our findings demonstrated that NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-ß in EC, suggesting that genetically escalated NLRC5 and IFN-ß may act as potential candidates for the clinical translation of adjuvant immunotherapies to patients with EC.

18.
Adv Healthc Mater ; 12(24): e2202903, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37523195

RESUMO

Antibiotic colistin is the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. Emergence of colistin resistance in microbes is a critical challenge. Herein, curcumin is discovered, for the first time, to reverse the resistance phenotype of colistin-resistant bacteria via a checkerboard assay. For the co-delivery of curcumin and colistin, negatively charged poly(ethylene glycol)-functionalized liposomes encapsulating both drugs (Lipo-cc) are prepared. Killing kinetics and live/dead assays confirm the antibacterial activity of Lipo-cc against colistin-resistant bacteria, which is more potent than that of the free curcumin and colistin combination. Mechanistical studies reveal that Lipo-cc restores the affinity of colistin for the bacterial membrane and improves the uptake of curcumin, which leads to reduced efflux pump activity, achieving a synergistic effect of colistin and curcumin. At the effective antibacterial dose, Lipo-cc does not exhibit any toxicity. The therapeutic efficacy of Lipo-cc is further demonstrated in an intestinal bacterial infection model induced with colistin-resistant Escherichia coli. Lipo-cc reduces the bacterial burden with over 6-log reduction and alleviated inflammation caused by infection. Importantly, unlike colistin, Lipo-cc does not affect the homeostasis of the intestinal flora. Taken together, Lipo-cc successfully overcame colistin resistance, indicating its potential for the treatment of colistin-resistant bacterial infections.


Assuntos
Curcumina , Infecções por Bactérias Gram-Negativas , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Lipossomos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Escherichia coli , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
19.
Water Res ; 243: 120396, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506637

RESUMO

Aqueous redox flow battery (RFB) desalination is considered as an emerging technology for both freshwater production and energy storage. However, the desalination capacity of desalination RFB is constrained by the amount of redox active materials. To break through this innate limit, a tandem redox strategy is reported to boost the desalination capacity of desalination RFB through reactivating the depleted redox active materials to achieve relay desalination. Taking zinc/sodium ferrocyanide as the proof-of-concept model, the introduction of 5.6 g Prussian blue (PB) as a reactivator could boost the desalination capacity by ∼106.1%, reaching to 651.2 mAh, compared with the theoretical limit of 315.9 mAh. This system can afford the desalination of 34-47 mL seawater with 85%-91% NaCl removal and as low as 8.17 kJ/mol (2.27 Wh/L) salt energy consumption using only 15 mL of catholyte, while providing 55.6-42.5 Wh/L electrical energy for other purposes, outperforming the reported desalination RFBs so far. This study represents a paradigm shift to rational design for desalination RFB and may broaden the implications in desalination, energy storage, and other related fields.


Assuntos
Eletricidade , Água Doce , Oxirredução , Estudo de Prova de Conceito , Água do Mar , Cloreto de Sódio
20.
Sci Total Environ ; 899: 165699, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495125

RESUMO

Cadmium (Cd) is a hazardous environmental heavy metal with a prolonged biological half-life. Due to the main route of foodborne exposure, the intestinal tract is particularly vulnerable to Cd-induced toxicity. However, the chronic toxicity and underlying mechanisms of Cd in intestinal diseases, including colorectal cancer (CRC), still remain vague. Herein, we aim to investigate the long-term effects of Cd exposure on CRC development and the key signaling event. Our findings indicate that chronic and low-dose exposure to Cd promoted the invasion and metastasis capability of CRC cells in vitro and in mice, with a marginal increase in cell growth. The expression of cell junction-related genes was down-regulated while those molecules that facilitate cell mobility were significantly increased by Cd exposure. Epidermal growth factor receptor (EGFR) signaling was identified to play the dominant role in Cd-promoted CRC metastasis. Interestingly, Cd activated EGFR in a non-canonical manner that exhibited distinct signaling dynamics from the canonical ligand. In contrast to EGF, which induced transient EGFR signaling and ERK activation, Cd promoted sustained EGFR signaling to trigger Akt/mTOR cascade. The unique signaling dynamics of EGFR induced by Cd provoked responses that preferably enhanced the metastatic capacity rather than the growth. Furthermore, blockade of EGFR abrogated the promoting effects of Cd on the liver metastasis of CRC cells. In conclusion, this study provides a better understanding of the long-term influences of environmental Cd on CRC metastasis and reveals the unique EGFR signaling dynamics induced by Cd exposure.


Assuntos
Cádmio , Neoplasias Colorretais , Animais , Camundongos , Cádmio/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Serina-Treonina Quinases TOR , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA